organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Pyridyl)bis(1,3,4-thiadiazol-2-ylamino)methane

Yu-Xia Zhang* and Peng Liu

Department of Chemistry, Xinyang Normal University, Henan 464000, People's Republic of China

Correspondence e-mail: yuxiazhang@mail2.xytc.edu.cn

Received 15 September 2007; accepted 17 September 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.095; data-to-parameter ratio = 17.2.

In the title compound, $C_{10}H_9N_7S_2$, the dihedral angle between the aminothiazole rings is 80.91 (10)°. In the crystal structure, the molecules are linked into chains by $N-H\cdots N$ hydrogen bonds

Related literature

The title compound was synthesized according to a similar method reported by Hopkinson *et al.* (1991).

Experimental

Crystal data $C_{10}H_9N_7S_2$ $M_r = 291.36$

Monoclinic, $P2_1/n$ *a* = 11.283 (2) Å

b = 8.7613 (18) Å	
c = 13.151 (3) Å	
$\beta = 97.13 \ (3)^{\circ}$	
V = 1290.0 (5) Å ³	
Z – 4	

Data collection

Bruker P4 diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min} = 0.983, T_{\max} = 1.000$
(expected range = 0.921 - 0.937)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 172 parameters $wR(F^2) = 0.095$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.29$ e Å⁻³2953 reflections $\Delta \rho_{min} = -0.33$ e Å⁻³

Mo $K\alpha$ radiation $\mu = 0.41 \text{ mm}^{-1}$

 $0.20 \times 0.18 \times 0.16$ mm

5688 measured reflections 2953 independent reflections

1908 reflections with $I > 2\sigma(I)$

T = 153 (2) K

 $R_{\rm int} = 0.026$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2 - H2A \cdots N1^{i} \\ N5 - H5A \cdots N3^{i} \end{array}$	0.86 0.86	2.13 2.27	2.866 (2) 2.949 (2)	143 136
Summatry and a (i)	v 1 u 1	1 3		

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

YXZ gratefully acknowledges the financial support of the Science Foundation of Henan Province in China (grant No. 0511020400).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2543).

References

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Hopkinson, C., Meakins, G. D. & Purcell, R. J. (1991). Synthesis, pp. 621–624. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. supplementary materials

Acta Cryst. (2007). E63, o4128 [doi:10.1107/S1600536807045473]

(2-Pyridyl)bis(1,3,4-thiadiazol-2-ylamino)methane

Y.-X. Zhang and P. Liu

Comment

The molecule of the title compound, (I) (Fig. 1), consists of two aminothiadiazolyl rings and a pyridyl group bridged by a carbon atom with the N donors of the pyridyl and thiadiazolyl groups extending toward the same direction. Dihedral angles between rings (identified by one atom) are $S1/S2 = 80.91 (10)^\circ$, $S1/N1 = 87.08 (9)^\circ$, $S2/N1 = 73.65 (9)^\circ$.

In the crystal, adjacent molecules are linked by N—H···N hydrogen bonds (Table 1) to generate a one-dimensional supramolecular network, as shown in Fig. 2. There are no aromatic π - π stacking interactions involving the thiadiazolyl and pridyl rings.

Experimental

The title compound, was obtained by the reaction of 2-aminothiadiazole (5.05 g, 0.05 mmol) and 2-pyridylaldehyde (6.5 g, 0.06 mmol) in 100 ml me thanol solution with ten drops of 6 M HCl. The colorless block crystals of (I) were grown *via* recrystallization in methanol at room temperature.

Refinement

The H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Figures

Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2. The packing of (I), viewed down the *a* axis, showing intermolecular N—H…N hydrogen bonds (dashed lines).

(2-Pyridyl)bis(1,3,4-thiadiazol-2-ylamino)methane

Crystal data	
$C_{10}H_9N_7S_2$	$F_{000} = 600$
$M_r = 291.36$	$D_{\rm x} = 1.500 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 12640 reflections
a = 11.283 (2) Å	$\theta = 3.4 - 27.5^{\circ}$
b = 8.7613 (18) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 13.151 (3) Å	T = 153 (2) K
$\beta = 97.13 \ (3)^{\circ}$	Block, colourless
$V = 1290.0 (5) \text{ Å}^3$	$0.20\times0.18\times0.16~mm$
Z = 4	

Data collection

Bruker P4 diffractometer	2953 independent reflections
Radiation source: fine-focus sealed tube	1908 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 153(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -14 \rightarrow 14$
$T_{\min} = 0.983, T_{\max} = 1.000$	$k = -11 \rightarrow 11$
5688 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.095$	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
2953 reflections	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	E dia dia amandra any

Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
---	---	---	---------------------------

C1	0.39112 (15)	0.06831 (18)	0.76159 (12)	0.0325 (4)
C2	0.55007 (17)	-0.0844 (2)	0.82008 (16)	0.0514 (5)
H2	0.5793	-0.1714	0.8552	0.062*
C3	0.62985 (18)	0.0092 (2)	0.77961 (16)	0.0526 (5)
H3	0.7109	-0.0138	0.7871	0.063*
C4	0.58714 (18)	0.1363 (2)	0.72823 (15)	0.0508 (5)
H4	0.6389	0.2016	0.6996	0.061*
C5	0.46582 (17)	0.1680 (2)	0.71879 (13)	0.0429 (5)
Н5	0.4353	0.2549	0.6843	0.052*
C6	0.25742 (15)	0.09060 (19)	0.75500 (12)	0.0345 (4)
Н6	0.2199	-0.0105	0.7517	0.041*
C7	0.17955 (14)	0.10493 (19)	0.57373 (13)	0.0345 (4)
C8	0.1164 (2)	0.0319 (2)	0.40249 (15)	0.0539 (5)
H8	0.0864	0.0218	0.3337	0.065*
C9	0.11296 (16)	0.1562 (2)	0.86842 (13)	0.0381 (4)
C10	-0.0725 (2)	0.1710 (3)	0.93144 (19)	0.0695 (7)
H10	-0.1392	0.1909	0.9644	0.083*
N1	0.43237 (13)	-0.05732 (15)	0.81182 (12)	0.0411 (4)
N2	0.20837 (14)	0.17587 (16)	0.66401 (11)	0.0410 (4)
H2A	0.1978	0.2728	0.6682	0.049*
N3	0.20509 (14)	-0.03795 (17)	0.55573 (11)	0.0433 (4)
N4	0.16735 (16)	-0.07900 (18)	0.45482 (12)	0.0534 (4)
N5	0.22648 (13)	0.16712 (16)	0.84586 (11)	0.0388 (4)
H5A	0.2792	0.2184	0.8846	0.047*
N6	0.03642 (14)	0.05646 (18)	0.82607 (13)	0.0496 (4)
N7	-0.07234 (16)	0.0652 (2)	0.86360 (15)	0.0657 (5)
S1	0.10722 (5)	0.20038 (6)	0.46841 (4)	0.04768 (17)
S2	0.05728 (5)	0.27312 (7)	0.95736 (4)	0.06054 (19)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0361 (10)	0.0303 (9)	0.0306 (9)	-0.0021 (7)	0.0020 (7)	-0.0041 (7)
C2	0.0401 (12)	0.0420 (11)	0.0689 (14)	0.0063 (9)	-0.0055 (10)	0.0012 (10)
C3	0.0323 (11)	0.0615 (14)	0.0632 (14)	-0.0034 (10)	0.0028 (10)	-0.0130 (11)
C4	0.0488 (13)	0.0568 (13)	0.0484 (12)	-0.0155 (10)	0.0119 (10)	-0.0039 (10)
C5	0.0491 (12)	0.0382 (10)	0.0414 (11)	-0.0061 (9)	0.0052 (9)	0.0050 (8)
C6	0.0380 (10)	0.0303 (9)	0.0344 (10)	0.0012 (7)	0.0018 (7)	-0.0035 (7)
C7	0.0313 (10)	0.0363 (10)	0.0358 (10)	0.0020 (7)	0.0033 (7)	0.0017 (8)
C8	0.0639 (14)	0.0591 (13)	0.0366 (11)	-0.0043 (11)	-0.0022 (10)	-0.0014 (10)
C9	0.0411 (11)	0.0380 (10)	0.0348 (10)	0.0012 (8)	0.0026 (8)	-0.0023 (8)
C10	0.0451 (14)	0.0941 (18)	0.0721 (16)	-0.0046 (12)	0.0190 (11)	-0.0144 (14)
N1	0.0385 (9)	0.0324 (8)	0.0506 (9)	-0.0012 (7)	-0.0011 (7)	0.0057 (7)
N2	0.0530 (10)	0.0298 (8)	0.0382 (9)	0.0069 (7)	-0.0023 (7)	-0.0019 (7)
N3	0.0527 (10)	0.0382 (9)	0.0376 (9)	0.0060 (7)	-0.0001 (7)	-0.0035 (7)
N4	0.0708 (12)	0.0486 (10)	0.0386 (10)	-0.0010 (9)	-0.0016 (8)	-0.0094 (8)
N5	0.0344 (9)	0.0441 (9)	0.0375 (9)	-0.0054 (7)	0.0024 (7)	-0.0114 (7)
N6	0.0388 (9)	0.0554 (10)	0.0542 (10)	-0.0067 (8)	0.0042 (8)	-0.0112 (8)

supplementary materials

N7 S1	0.0417 (11) 0.0522 (3)	0.0844 (14) 0.0472 (3)	0.0713 (13) 0.0414 (3)	-0.0134 (10) 0.0072 (2)	0.0086 (9) -0.0028 (2)	-0.0122 (11) 0.0083 (2)
S2	0.0534 (4)	0.0723 (4)	0.0590 (4)	-0.0035 (3)	0.0191 (3)	-0.0240 (3)
Geometric paran	neters (Å, °)					
C1—N1		1.337 (2)	C7—N2		1.344	(2)
C1—C5		1.382 (2)	C7—S1		1.733	60 (18)
C1—C6		1.513 (2)	C8—N4		1.284	(2)
C2—N1		1.340 (2)	C8—S1		1.722	2 (2)
C2—C3		1.373 (3)	С8—Н8		0.930	00
С2—Н2		0.9300	C9—N6	•	1.304	(2)
C3—C4		1.360 (3)	C9—N5		1.354	(2)
С3—Н3		0.9300	C9—S2		1.730	07 (18)
C4—C5		1.387 (3)	C10—N	7	1.287	7 (3)
C4—H4		0.9300	C10—S	2	1.714	(2)
С5—Н5		0.9300	С10—Н	10	0.930	00
C6—N5		1.450 (2)	N2—H2	2A	0.860	00
C6—N2		1.460 (2)	N3—N4	ļ	1.390	0(2)
С6—Н6		0.9800	N5—H5	βA	0.860	00
C7—N3		1.313 (2)	N6—N7	7	1.380	0(2)
N1-C1-C5		121.96 (17)	N2—C7	—S1	121.4	2 (13)
N1-C1-C6		114.72 (14)	N4—C8	—S1	115.4	4 (15)
C5-C1-C6		123.32 (16)	N4—C8	—Н8	122.3	;
N1—C2—C3		123.64 (19)	S1—C8	—H8	122.3	;
N1—C2—H2		118.2	N6—C9	—N5	123.2	27 (16)
С3—С2—Н2		118.2	N6—C9	S2	114.1	2 (14)
C4—C3—C2		118.21 (19)	N5—C9	S2	122.6	60 (13)
С4—С3—Н3		120.9	N7—C1	0—S2	116.0	3 (17)
С2—С3—Н3		120.9	N7—C1	0—H10	122.0)
C3—C4—C5		119.58 (18)	S2—C1	0—H10	122.0)
С3—С4—Н4		120.2	C1—N1	—C2	117.8	0 (16)
С5—С4—Н4		120.2	C7—N2	—С6	120.8	86 (14)
C1-C5-C4		118.80 (18)	C7—N2	—H2A	119.6	•
C1—C5—H5		120.6	C6—N2	—H2A	119.6	
C4—C5—H5		120.6	C7—N3	—N4	111.7	7 (15)
N5-C6-N2		109.47 (14)	C8—N4	—N3	112.3	1 (15)
N5-C6-C1		110.65 (14)	C9—N5	—C6	118.6	51 (14)
N2-C6-C1		112.76 (14)	C9—N5	—Н5А	120.7	7
N5—C6—H6		107.9	C6—N5	—Н5А	120.7	7
N2—C6—H6		107.9	C9—N6	—N7	112.4	0 (16)
С1—С6—Н6		107.9	C10—N	7—N6	111.4	7 (18)
N3—C7—N2		124.47 (16)	C8—S1-	—C7	86.39	0 (10)
N3—C7—S1		114.09 (13)	C10—S	2—С9	85.96	5 (11)
N1-C2-C3-C4	4	0.0 (3)	S1—C7-	—N3—N4	0.01	(19)
C2—C3—C4—C3	5	0.4 (3)	S1—C8	—N4—N3	0.0 (2	2)
N1-C1-C5-C4	4	0.1 (3)	C7—N3	—N4—C8	0.0 (2	2)
C6-C1-C5-C4	4	-179.31 (15)	N6—C9	—N5—C6	14.7	(3)
C3—C4—C5—C	1	-0.4 (3)	S2—C9-	—N5—C6	-165	.92 (13)

supplementary materials

N1—C1—C6—N5	85.31 (18)	N2—C6—N5—C9	74.84 (19)
C5-C1-C6-N5	-95.21 (18)	C1—C6—N5—C9	-160.28 (14)
N1—C1—C6—N2	-151.70 (15)	N5-C9-N6-N7	178.40 (17)
C5-C1-C6-N2	27.8 (2)	S2—C9—N6—N7	-1.1 (2)
C5-C1-N1-C2	0.2 (3)	S2-C10-N7-N6	0.5 (3)
C6—C1—N1—C2	179.69 (15)	C9—N6—N7—C10	0.4 (3)
C3—C2—N1—C1	-0.3 (3)	N4—C8—S1—C7	0.04 (17)
N3—C7—N2—C6	-8.6 (3)	N3—C7—S1—C8	-0.03 (15)
S1—C7—N2—C6	173.28 (12)	N2-C7-S1-C8	178.31 (15)
N5-C6-N2-C7	-151.96 (15)	N7—C10—S2—C9	-0.9 (2)
C1—C6—N2—C7	84.40 (19)	N6-C9-S2-C10	1.09 (16)
N2	-178.27 (15)	N5-C9-S2-C10	-178.39 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A…N1 ⁱ	0.86	2.13	2.866 (2)	143
N5—H5A····N3 ⁱ	0.86	2.27	2.949 (2)	136
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+3/2$.				

Fig. 1

